Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back Exam – 2081 Phagun/Chaitra

Program:

Diploma in Civil/Information Technology/

Full Marks: 80

Computer/Agricultural/Engineering

Pass Marks: 32

Year/Part:

II/I (2021, 2022) © Arjun

Time: 3 hrs.

Subject:

Engineering Mathematics III

Candidates are required to give their answering their own words as far as practicable. The figures in the margin indicate full marks. WWW.arjun00.com.np. www.arjun00.com.np

Group 'A'

Attempt ALL questions.

figures in the margin indicate full marks.

 $[(7\times2)\times2=28]$

Find f_x , f_y and f_z where f(x, y, z) = xy + yz + zx. 1.

function $f(x, y) = x^3 + 3x^2y - y^3$ that the b. homogeneous. Also, find its degree.

2. Find $\frac{dy}{dx}$ when $y = \log(\tanh x)$.

> Find the derivative of $y = \cos^{-1}(3x - 4)$ b.

Using L-hospital rule to evaluate: lim 3. a.

Find the equation of the tangent to the curve: b. $y = 2x^3 - 5x^2 + 8$ at (2, 4)

Evaluate: $\int \frac{dx}{4x^2+25}$ 4.

Find the area bounded by the curve $y = x^2$ with the x-axis and b. two ordinates x=1, x=3.

Integrate: $\int \sqrt{25 - 9x^2} dx$ 5. a.

Find the fundamental period of tan2x. b.

Solve: tanx dy + tany dx = 06. a.

Form a PDE eliminating a and b from z = ax + by + ab. b.

7. Solve: p + q = 1a.

www.arjun00.com.np

b. Solve: $\frac{dy}{dx} + 1 = e^{x+y}$

Attempt ALL questions.

[13×4=52]

Find the local maxima, local minima and point of inflection of the 8. function $f(x) = 2x^3 - 15x^2 + 36x + 5$.

OR

Find the two numbers whose sum is 10 and the sum of whose square is minimum. www.arjun00.com.np

- Water is poured into a right circular cylinder of radius 6 ft. at the 9. rate of 15 cu. ft./min. Find the rate at which the level of water is rising in the cylinder.
- Show that the equation of the tangent to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at 10. the point (a, b) is $\frac{x}{a} + \frac{y}{b} = 2$
- Use definition to find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x,y) = xy + y^2$
- Find $\frac{du}{dt}$ when $u = x^2 + y^2$, $x = \cos t + \sin t$, $y = \cos t \sin t$ at t=0.
- Find the area of circle $x^2 + y^2 = 9$.

 OR

Sketch the graph of curve $y = x^2 - 4x + 3$

- Find the area of the region between the curves $y^2 = 16x$ and line y = 2x.
- 15. Integrate: $\int \frac{dx}{3\sin x + 4\cos x}$
- 16. Solve: $(x + y + 1) \frac{dy}{dx} = 1$
- 17. Show that the equation: $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$ is exact and solve it.
- Form a PDE by eliminating the f from: 18. $\ell x + my + nz = f(x^2 + y^2 + z^2)$
- Solve: $xz \frac{\partial z}{\partial y} + yz \frac{\partial z}{\partial y} = xy$
- Find the Fourier series of the function: 20.

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 \le 1 < \pi \end{cases}$$

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Back/Scholarship Exam - 2081/2082 Chaitra/Baishakh

Diploma in Civil/Electronics/Architecture/

Program: Information Technology/Hydropower/ Full Marks: 80

Computer Engineering OArjun

Year/Part: II/I (2013, 2014, 2016, 2017, 2018) Pass Marks: 32

Subject: Engineering Mathematics III Time: 3 hrs.

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

WWW.arjun00.com.np

Group 'A' Attempt ALL questions.

 $[(5\times2)\times3=30]$

- a. Define periodic function and fundamental period with [1+1+3] example. Find the fundamental period of tan5x.
 - b. Find the Fourier series of the function: [5]

$$f(x) = \begin{cases} 0 & \text{for } -\pi < x < 0 \\ 1 & \text{for } 0 < x < \pi \end{cases}$$

- a. Define abelian group. Prove that inverse of any element [5] is a group is unique.
 - b. Prove that the fourth roots of unity, $S = \{1, -1, i, -i\}$ [5] forms a group under multiplication.
- 3. a. Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x, y) = x^2y xy^2$. [5]
 - b. Solve the homogeneous differential equation: [5]

$$\frac{dy}{dx} = \frac{x^2 + y^2}{2x^2}$$

Group 'B'

Attempt ALL questions.

[10×5=50]

- 4. Solve: $\frac{dy}{dx} = \frac{x+y}{x}$
- Solve the partial differential equation:

$$z = ax + by + a^2 + b^2$$
 www.arjun00.com.np

- 6. Solve: sinxcosx dx + siny. cosy dy = 0
- 7. Test the convergence of the series by using Cauchy's Root Test: $1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \cdots$ for all positive value of x.

- 8. Show that series: $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$ is conditionally convergent.
- Find the interval and radius of convergence of power series:
 1+2x+4x²+8x³+.....
- 10. Find the Maclaurin's series expansion of cosx.
- 11. Expand f(x) in the Fourier series if $f(x)=x^2$ (0<x<2 π).
- 12. If $u = \log \frac{x^3 + y^3}{x + y}$ prove that $\frac{x \partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2$.
- Prepare a Cayley's table for the set {0, 1, 2, 3, 4} under the operation multiplication modulus Identify the identity and inverse element if exists.

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Scholarship Exam - 2081 Mangsir

Program: Diploma in Civil Engineering

Full Marks: 80

Year/Part:

пл (2021) © Arjun

Pass Marks: 32

Subject:

Engineering Mathematics III

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks. www.arjun00.com.np

Group 'A'

Attempt ALL questions.

 $[(7\times(2\times2)=28]$

- 1. a. Find $\frac{dy}{dx}$ when $y = \sin^{-1}(3x^2 2)$.
 - b. Find the derivative of $\ln\left(\cosh\frac{x}{a}\right)$
- 2. a. Find the points on the curve $x^2 + y^2 = 16$ where tangent is parallel to x-axis.
 - b. Evaluate: $\lim_{x\to 2} \frac{x^3-2x^2+2x-4}{x^2-5x+6}$
- 3. a. If $U = x^2 + y^2 + z^2$, show that XUx + YUy + ZUz = 2U.
 - b. If $z = 3x^3y^3 9x^2y + xy^2 + 4y$, find partial derivatives of $\frac{\partial z}{\partial x}$ and their values at (1, 0).
- 4. a. Integrate: $\int \frac{dx}{\sqrt{x^2-2ax}}$
 - b. Examine whether the function $f(x) = e^x e^{-x}$ is even or odd.
- 5. a. Integrate: $\int \frac{dx}{4x^2 25}$
 - b. Solve: $\sqrt{1-x^2} \, dy + \sqrt{1-y^2} \, dx = 0$
- 6. a. Solve: xdy + (x + y)dx = 0
 - b. Test the exactness of (2ax + by)ydx + (ax + 2by)xdy = 0. www.arjun00.com.np
- 7. a. Solve the differential equation of $\frac{dy}{dx} + \frac{y}{x} = 2x$
 - b. Find the fundamental period of $f(x) = \sin 2x$.

Attempt ALL questions.

[13×4=52]

- 8. Find the maximum and minimum values of the function $f(x) = x^4 14x^2 24x + 1$
- 9. Find the equation of tangent and normal to the curve $y = x^3 2x^2 + 4$ at the point (2,4).
- 10. Water flows into an inverted conical tank at the rate of 24 ft³/min. when the depth of water is 9ft. How fast is the level rising? Assume that the height of the tank is 15 ft. and the radius at the top is 5 ft.
- 11. Use definition find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x, y) = x^2 3xy$.
- 12. State the Euler's theorem of homogeneous function. If $z = x^n \phi\left(\frac{y}{x}\right)$ then prove that: $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$
- 13. Find the area of the region between the curve y²=4x and x=y.
- 14. Evaluate: $\int \frac{dx}{\sin x + \cos x}$
- 15. Find the area of ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$
- 16. Solve: $\frac{dy}{dx} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$
- 17. Show that the differential equation exact and solved: $\frac{dy}{dx} = \frac{x-y+1}{x+y+1}$
- If the normal at every point of a curve passes through a fixed point, show that the curve is a circle.
- 19. Form a Partial Differential Equation (PDE) by eliminating the function (F) from $x + y + z = F(x^2 + y^2 + z^2)$
- 20. Find the Fourier series of the functions:

$$f(x) = \begin{cases} -2x & \text{for } -\pi < x < 0 \\ 2x & \text{for } 0 < x < \pi \end{cases}$$

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back/Scholarship Exam-2080/2081, Chaitra/Baishakh

Diploma in Civil/Hydropower/Information Program:

Technology/Computer/Agriculture Engg.

Full Marks: 80

Year/Part: II/I (2021, 2022) © Arjun

Pass Marks: 32

Subject:

Engineering Mathematics III

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

WWW.arjun00.com.np

Group 'A'

Attempt ALL questions.

 $[(2+2)\times7=28]$

- Find the derivative of $\cos^{-1} x^2$ 1. a.
 - b. The side of a square sheet is increasing at the rate of 5cm/min. At what rate is the area increasing when the side is 12cm long?
- Show that the function $f(x) = 3x^3 24x + 1$ is increasing at 2. x = 4 and decreasing at $x = \frac{1}{2}$
 - Evaluate using L Hospital's rule: b.

$$\lim_{x \to 2} \frac{x^3 - 2x^2 + 2x - 4}{x^2 - 5x + 6}$$

3. Find first order partial derivatives of a.

$$\Delta f(x,y) = \ln(2x + 5y)$$

- b.
- Verify Euler's theorem for the function; f(x,y) = x + yExamine whether the function $f(x) = \frac{e^{x} e^{-x}}{e^{x} + e^{-x}}$ is even or odd? 4. a.
 - Evaluate: $\int \frac{1}{x^2+4} dx$ b.
- 5. Find the area bounded by the curve $y = 2x^2$ x-axis and the ordinates x = 0, x = 2
 - Write the engineering application of FEM. b.
- 6. Solve by separation of variable method of $\frac{dy}{dz} = 1 + y^2$
 - Solve: $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
- 7. Solve: $x \frac{dy}{dx} + y = x^4$ www.arjun00.com.np

b. Determine the order and degree of the differential equation:

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

Group 'B'

Attempt ALL questions.

[13×4=52]

8. Find the derivatives of x^{coshx}

9. Find the local maxima, minima and point of inflection if exists;

$$f(x) = 2x^3 - 3x^2 - 12x + 4$$

10. Evaluate: www.arjun00.com.np

$$\lim_{x\to 0} \frac{\tan x - x}{x^2 \cdot \tan x}$$

11. Let $u = \sin^{-1}\left(\frac{x^2+y^2}{x+y}\right)$, prove that; $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = t$ anu

12. If $u(x,y,z) = x^2 + y^2 + y^2$, x = 2t + 1, y = t + 5 and z = 7t then find $\frac{du}{dt}$ 13. Evaluate: $\int (x-3)\sqrt{x^2-1} dx$

14. Using integration, find the area of circle

15. Using limit of the sum, evaluate:

Define linear differential equation and solve: 16.

$$\frac{dy}{dx} + 2ytanx = sinx$$

Show that the differential equation is exact and solve it. 17.

$$(x + y - 1)dx + (x - y - 2)dy = 0$$

The population growth rate of a certain town is 8% per year. Model 18. the situation using a differential equation. What will be the population after 10 years?

19. Solve: p+q=x www.arjun00.com.np

Use the finite difference method to solve $y'' = y + x(x - 4) \qquad 0 \le x \le 4$ with y(0) = y(4) = 0

Council for Technical Education and Vocational Training Office of the Controller of Examinations

Sanothimi, Bhaktapur

Back/Scholarship Exam-2080/2081, Chaitra/Baishakh

Diploma in Civil/Hydropower/Architecture

Program: /Information Technology/Computer/

Full Marks: 80

Electronics Engineering

© Arjun

Year/Part: II/I (2013, 2014, 2016, 2017, 2018)

Pass Marks: 32

Time: 3 hrs.

Engineering Mathematics III Subject:

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks. www.arjun00.com.np

Group 'A'

Attempt ALL questions.

- Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where f(x, y) =1. $ax^2+2hxy+by^2$.
 - Define homogenous function. State and prove Euless theorem for a two variable cases.
- 2.
- a. Solve: $\frac{dy}{dx} = 1 + \tan(y x)$ b. If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.
- Define Fourier series of a function f(x) on the interval $(-\pi, \pi)$. 3. Find the Fourier series of:

$$f(x) = \begin{bmatrix} -1 & 0 \le x < \pi \end{bmatrix}$$

Find the MacLaurin's series expansion of sinx. b.

Group 'B'

[10×5=50] Attempt ALL questions. www.arjun00.com.np

4. Solve: $(xy^2+x)dx+(yx^2+y)dy=0$

Cont.

5. Form a partial differential equation: lx+my+nz=f(x²+y²+z²)

6. Solve the partial differential equation:

$$x(y-z)\frac{\partial z}{\partial x} + y(z-x)\frac{\partial z}{\partial y} = z(x-y)$$

7. Find $\frac{du}{dt}$ where, u = z-sinxy, x = t, y = logt, $z = e^{t-1}$ at t=1.

Test the convergence of series

$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

Discuss the convergences of the series:

$$x + \frac{3}{5}x^2 + \frac{8}{10}x^3 + \frac{15}{17}x^4 + \dots + \frac{n^2 - 1}{n^2 + 1}x^n + \dots$$

 Find the interval of convergence and the radius of convergence of the power series.

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

- 11. Define periodic function. Find the fundamental period of $\cos 2\pi x$.
- Define a group. In a group prove that (a*b)⁻¹=b⁻¹*a⁻¹. Also, prove that inverse of each element of a group is unique.
- 13. Define binary operation. Show that multiplication (x) is binary on the set S={1, w, w²} where w is cube root of unity.

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Scholarship Exam-2080 Bhadra

Diploma Civil/Hydropower/Information

Program: Technology/Computer Engineering Full Marks: 80

Year/Part:

II/I (2021, 2022) © Arjun

Pass Marks: 32

Engineering Mathematics III Subject:

Time: 3 hrs.

Candidates are required to give their answers their own words as far as practicable. The figures in the margin indicate full marks. **WWW.arjun00.com.np** Group'A'

Attempt All questions.

 $[(7\times2)\times2=28]$

- a) Find the derivative of log(tan 2x).
 - b) Find the derivative of $x^{\sinh \frac{x}{a}}$.
- 2. a) Using L Hospital rule: Evaluate: $\lim_{x\to 0} \frac{\log \tan x}{\log x}$
 - b) Find the points on the curve $y = x^3 3x^2 + 1$ where the tangent are parallel to x - axis.
- 3. a) If $f(x,y) = \sqrt{x^2 + y^2}$, then find f(x) at the point (2, 1).
- b) Find $\frac{du}{dx}$ if $u = x^2 + y^2$, $x = at^2$ and y = 2at. 4. a) Evaluate: $\int \frac{dx}{e^{x} + e^{-x}}$
- - b) Examine whether the function f(x)is even or odd.
- 5. a) Evaluate: $\int \sqrt{2ax x^2} dx$
 - b) Solve: $\sqrt{1-x^2} \, dy + \sqrt{1-y^2} \, dx = 0$
- 6. a) Solve: x dy + y dx = 0
 - b) Form the partial differential equations: $z = ax + by + a^2 + b^2$
- 7. a) Solve: $\frac{dy}{dx} = e^{x-y} + x^3 e^{-y}$
 - b) Find the fundamental period of $f(x) = \sin 2\pi x$.

Group 'B'

Attempt ALL questions.

 $[13 \times 4 = 52]$

8. Find the maximum and minimum values of the function $f(x)=x^3-6x^2+9x-2$.

www.arjun00.com.np

Cont.

OR

A man wishes to fence a rectangular garden with 256-meter fencing material. Find the maximum area he can enclose.

- 9. A spherical ball of salt dissolving in water decreases its volume at the rate of 0.75 cm3/min. Find the rate at which the radius of the salt is decreasing when its radius is 6 cm.
- 10. Find the equation of the tangent and normal to the curve $y = x^3 2x^2 + 4$ at (2, 4).
- 11. Use definition. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x, y) = x^2y xy^2$.
- 12. Verify Euler's theorem for homogeneous function $f(x, y, z) = x^2 + y^2 + z^2$.
- 13. Sketch the graph of y = (x-1)(x-2).

Find the area of circle $x^2 + y^2 = 36$.

- 14. Evaluate: $\int \frac{dx}{1-2\cos x}$
- 15. Using limit of the sum, find the area bounded by the curve $y = 3x^2$, the x-axis and the ordinates x = 0 and x = 4.
- 16. Solve: $\frac{dy}{dx} = \frac{y}{x} + tan\left(\frac{y}{x}\right)$.
- 17. Solve: $(1+x^2)\frac{dy}{dx} + 2xy = 3x^2$.
- The half-life of isotopic radium is 300 years. Find the time required to decay 10% of its initial amount.
- 19. Solve: $xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} = xy$.

OR

Form the partial differential equations if $x + y + z = f(x^2 + y^2 + z^2)$.

20. Find the Fourier series of the function:

$$f(x) = \begin{cases} 1 & -\pi < x < 0 \\ -1 & 0 \le x < \pi \end{cases}$$

www.arjun00.com.np

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Back/Scholarship Exam-2080 Bhadra

Diploma Civil/Architecture/Electronics/

Information Technology/ Hydropower Program:

Full Marks: 80

Computer Engineering C Ariun

II/I (2013, 2014, 2016, 2017, 2018) Year/Part:

Pass Marks: 32

Subject: Engineering Mathematics III Time: 3 hrs.

Candidates are required to give their ans figures in the margin indicate full marks. www.arjun00.com.np

Group'A'

Attempt All questions.

 $[(5\times2)\times3=30]$

1. a. Define Fourier series of a function f(x) on the interval $(-\pi, \pi)$. Find the Fourier series of:

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 \le x < \pi \end{cases}$$

- b. Test whether the function $f(x)=x^2,-1 < x < 1$ is even or odd. Also, find the appropriate Fourier series.
- 2. a. Define group. The identity element in a group is unique. Prove.

OR

A set of matrices of the form $A_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ where θ is a number, is given:

- Show that the operation of matrix multiplication is closed.
- Show that A_0 is the identity element of A_0 .
- Show that $A \theta$ is the inverse element of A_{θ} . iii.
- b. Let $G = \{0, 1, 2\}$, form a composition table for G under multiplication modulo 3. Find the identify and inverse element of 1 and 2.
- 3. a. Using definition method, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x, y) = x^2y^2$.
 - b. Let $u = sin^{-1} \frac{x^2 + y^2}{x + y}$, Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = tan u$.

 Group'B'

Attempt any <u>TEN</u> questions.

[10×5=50]

4. By separating variables, solve: (xy + x)dy - (xy + x)dx = 0

www.arjun00.com.np Cont.

- 5. Change the equation $x^2y dx (x^3 + y^3)dy = 0$ into homogeneous differential equation and solve it.
- 6. Show that the equation is exact and solve it: (x + y 1)dx + (x y 2)dy = 0
- 7. Form a partial differential equation by eliminating 'f' from: $lx + my + nz = f(x^2 + y^2 + z^2)$
- 8. Solve: $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
- 9. By using D' Alembert's ratio test, test the convergence or divergence of the series: $\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \cdots$
- 10. Test whether the series $1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \frac{1}{\sqrt{4}} + \cdots$ is absolutely convergent of conditionally convergent.
- 11. Using Maclurin's series, expand the function f(x) = Sinx
- Find the interval of convergence and radius of convergence of the power series;

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n(n+1)}{2} x^{n-1}$$

- 13. Define periodic function. Find the fundamental period (P) of f(x) = Sin2x.
- 14. Test the following series for convergence by Cauchy's root test:

$$\frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)x^3 + \dots + \left(\frac{n+1}{n+2}\right)x^n + \dots \text{ for } x \neq 1.$$

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back Exam-2079, Bhadra/Ashwin

Diploma Civil /Computer/Electronics Program:

Full Marks: 80

/Architecture/IT/ Hydropower/Engg.

© Arjun

II/I (2013, 2018, 2014, 2016, 2017) Year/Part:

Pass Marks: 32

Subject: Engineering Mathematics III Time: 3 hrs.

Candidates are required to give their ans figures in the margin indicate full marks. www.arjun00.com.np

Group'A'

Attempt All questions.

 $[3\times(5+5)=30]$

1. a) Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when

$$f(x,y) = x^3 + y^3 + 3axy$$

- b) Find $\frac{df}{dt}$ of $u = e^{xyz}$, $x = t^3$, $y = \frac{1}{t}$, $z = e^t$.
- 2. a) Define Group. Prove that the identity element of group is unique. Also show that the inverse of group is unique.
 - b) If $G = \{\cdots 6, -4, -2, 0, 2, 4, 6, \cdots \}$ then prove that (G, +) is a group.
- 3. a) Test whether the following series is absolutely or conditionally convergent:

$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$

b) Find the Taylor's series expansion of $f(x) = e^{-x}$ about x = 2.

Group'B'

Attempt All questions.

[10×5=50]

4. Solve by separating the variables :

$$a)e^{x-y}dx + e^{y-x}dy = 0$$

b)
$$\frac{dy}{dx} = -\frac{1+\cos 2y}{1-\cos 2x}$$

5. Solve the homogeneous differential equation : $\frac{dy}{dx} = \frac{x^2y}{x^3+y^3}$.

www.arjun00.com.np

Cont

- 6. Find the Fourier series expansion of $f(x) = \begin{cases} 0 & -\pi < x < 1 \\ 1 & 0 \le x < \pi \end{cases}$.
- Define periodic function. Find the smallest positive period of P of sinnx.
- Prepare Cayley table for the set {0,1,2,3,4,5} under the operation Multiplication module 6. Identify the identity element and the inverse of each element if possible.
- 9. Solve the partial differential equation: (Any One)

i)
$$\frac{\partial f}{\partial x} xz + yz \frac{\partial f}{\partial y} = xy$$
. ii) $x p - yq + x^2 - y^2 = 0$

10. Find the interval and radius of convergence of the series:

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n^2}$$

11. Verify Euler's theorem for homogeneous function

$$f(x, y, z) = x^2 + y^2 + z^2$$
.

 Define convergent and divergent series. Determine whether the following series is convergent of divergent by ratio test

$$\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \cdots$$

 Test whether the function is even or odd. Find the corresponding Fourier series

$$f(x) = \begin{cases} \pi, & -1 < x < 0 \\ -\pi, & 0 \le x < 1 \end{cases}$$

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back Exam-2078, Kartik/Mangsir

Program: Diploma in Civil/Hydropower/Architecture/ Full Marks: 80 Electronics/IT/Computer Engineering

Year/Part: II/I (2013, 2017, 2014, 2016, 2018)

Pass Marks: 32

Subject: Engineering Mathematics - III C Arjun_{Time: 3} hrs

Candidates are required to give ir answers in their own words as far as practicable. The figures in the new words as far as

Group 'A'

Attempt All questions.

[(5+5)x3=30]

- 1. a) Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x,y) = x^2y xy^2$
 - b) If $u(x,y,z) = x^2 + y^2 + z^2$, x = 2t + 1, y = t + 5 and Z = 7t, then find $\frac{du}{dt}$
- 2. a) State limit comparisons test and use it to test the convergent or divergent of the infinite series. $\sum \sqrt{n^2+1}-n$
 - b) Find the Fourier series of the function

$$f(x) = \begin{cases} 1 & -\pi < x \ 0 \\ -1 & 0 \le x < \pi \end{cases}$$

- a) Define a group and prove that the identify element of group is unique. Again prove that the inverse of a group is unique.
 - b) Let $s = \{0, 1, 2, 3, 4\}$. Show that S forms a group under the addition modulo 5.

Group 'B'

Attempt Any Five questions.

[5x10=50]

- 4. Solve by separating the variables : $\sqrt{1-x^2} dy + \sqrt{1-y^2} dx = 0$
- Solve the homogeneous differential equation : $\frac{dy}{dx} = \frac{x^2 + y^2}{2x^2}$

www.arjun00.com.np

Cont

Solve the partial differential equations (Any one).

$$a) z = ax + by + a^2 + b^2$$

b)
$$xp - yq + x^2 - y^2 = 0$$

- 7. Solve: (mz ny)p + (nx lz)q = ly mx
- Test the convergent of the series and find its sum if convergent:

$$3 + \frac{3}{-4} + \frac{3}{(-4)^2} + \cdots$$

- 9. Test whether the given series below is absolutely convergent of conditionally convergent $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$
- 10. Find the interval and radius of convergence of the power series : $1 + 2x + 4x^2 + 8x^3 + \cdots$

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back Exam-2076, Falgun/Chaitra

Program: Diploma in Civil/ Hyd/Arc/Elx/IT/

Computer Engineering Full Marks: 80

Year/Part: II/I [New Course] © Arjun Pass Marks: 32

Subject: Engineering Mathematics III Time: 3 hrs

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Group 'A' www.arjun00.com.np

Attempt All Questions.

- a) Define trigonometric and Fourier series. [1+1+3]
 Determine the Fourier coefficient as by Euler's Formula.
 - b) Find the fourier series of the function $F(x) = \begin{cases} 0 & 0 < x \le \pi \\ 1 & \pi < x < 2\pi \end{cases}$ [5]
- a) Define a group. In a group, prove that
 (a * b)⁻¹ = b⁻¹ * a⁻¹

 Also prove that inverse of each element of a group is unique.
 - b) Given a set G={0,1,2,3,4}and a binary operation addition modulo 5(+₅) is defined on G. Prepare caley's table for it. Find the identity and inverse element of 3 and 4
- 3. a) By using definition of partial derivatives find Fx [5] nad Fy for $F(x,y) = x^2y xy^3$
 - b) If $U = \sqrt{x^2 + y^2 + z^2}$ then prove that. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{u}$

Group 'B'

Attempt Any Ten Questions.

4. Solve
$$(1 + cosy)dy = (1 - cosx)dx$$
 [5]

5. Solve
$$x \frac{dy}{dx} = y - x \tan \frac{y}{x}$$
 [5]

6. Form a P.D.E
$$z = \phi(x + iy) + \phi(x - iy)$$
 [5]

7. By using ratio test, test the convergence or divergence of the series
$$\sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}$$

8. Test the following series for convergence by Cauchy root test.
$$x + \frac{3}{5}x^2 + \frac{8}{10}x^3 + \dots$$
 [5]

9. Find the radius and interval of convergence of the power [5] series
$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{10^n}$$

11. Find the Taylor's series expansion of
$$f(x) = \frac{1}{1-x}$$
 at $x = 0$ [5]

12. Find
$$\frac{du}{dt}$$
 of $U = e^{xyz}$, $x = t^3$, $y = \frac{1}{t}$, $z = e^t$ [5]

Office of the Controller of Examinations Sanothimi, Bhaktapur

Regular/Back Exam-2075, Falgun/Chaitra

Diploma in Civil/ Architecture/ Program:

Full Marks: 80

Computer/ Electronics/ IT Engineering

II/I (New+Old Course) Year/Part:

Pass Marks: 32

Ariun Subject: Engineering Mathematics-III

Time: 3 hrs

Candidates are required to gir far as practicable. The figure. www.arjun00.com.np Group 'A'

Attempt All questions.

[3x(5+5)=30]

- 1. a) Define partial derivative of a function. Using definition, Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$: $f(x, y) = xy + y^2$
 - b) Define homogeneous function. State and prove Euler's theorem for a two variable cases.
- 2. a) Define ordinary differential equation. Solve by separation of variables (any One) i) $\frac{dy}{dx} = \frac{x+y}{x+y+1}$

$$i) \frac{dy}{dx} = \frac{x+y}{x+y+1}$$

$$ii) \frac{dy}{dx} + 1 = e^{x+y}$$

Show that the given function is homogeneous and solve: b) $x \sin \frac{y}{x} dy = \left(y \sin \frac{y}{x} - x \right) dx$

or

Show that the given equation is exact and solve: (2ax+by) ydx+ (x+2by) xdy=0

- Discuss the convergence of given geometric series for r=1, -1 $a+ar+ar^2+\cdots+ar^{n-1}+\cdots$ 3. a) and |r| < 1, |r| > 1.
 - (b) Test the convergence of series by comparison test or ratio test (Any One): www.arjun00.com.np

i)
$$\sum \frac{\sqrt{n}}{n^2+1}$$

ii)
$$\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \cdots$$

Contd.....

Attempt All questions.

- 4. Find $\frac{dy}{dt}$ (Any One):
 - i) u= z+ sin (xy), x=t, y=log t, z= e^{t-1}
 - ii) $u=x^3-y^3$, $x=\cos t$, $y=\sin t$
- 5. Form a partial differential equation: $lx + my + nz = f(x^2 + y^2 + z^2)$
- 6. Solve the partial differentiate equation: $y^2p xyq = x(z 2y)$
- Find the interval and radius of convergence of the power series:

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

- 8. Find the Taylor's series expansion of $f(x) = \sqrt{x}$ about x = 0.
- 9. Obtain the Fourier series: $f(x) = \begin{cases} 0, -2 < x < 0 \\ 2, 0 < x < 2 \end{cases}$
- 10. Find the fourier series for the function defined as $f(x) = \begin{cases} \pi, -1 < x < 0 \\ -\pi, 0 \le x < 1 \end{cases}$
- Define binary operation. Show that multiplication (x) is binary on the set s={1,w,w²}, where w is the cube root of unity.
- Find the identity element for the binary operation is defined as x*y=x+y=1 for every x, y∈ R. Also find the inverse of 2 and -3.
- 13. Let G=R- {-1}, the set of real numbers without -1. An operation* is defined on G by x*y = x+y+xy for all x, y ∈ G. Show that (G,*) is a group.

Good Luck

www.arjun00.com.np

Council for Technical Education and Vocational Training Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back Exam-2074, Falgun/Chaitra

Diploma in Civil/Architecture/ Program:

Full Marks: 80

Computer/Electronics Engineering &

Information Technology

IM (New + Old Course) Year/Part:

© Arjun

Page Marks:32

Subject:

Engineering Mathematics III

Time: 3 hrs

Candidates are required to give the practicable. The figures in the marg

Group "A"

Attempt (All) questions

[10x3=30]

Define Fourier series in the interval $(-\pi, \pi)$. Find the Fourier series of the function.

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 \le x < \pi/2 \\ 0 & \pi/2 \le x < \pi \end{cases}$$

- a) Using Maclaurin's series, expand the function f(x)=tan x.
 - b) Test the convergence of the series: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n! + 1}$ a) If (x, y) = x3 + 3x2y + 3xy2 + y3, Find $f_{xx}, f_{xy}, f_{yx}, f_{yy}$.
- 3.
 - b) Find total differential $\frac{du}{dt}$ if $u = (x + y)e^{xy}$, x = t, $y = \frac{1}{t^2}$.

Attempt (All) questions

[10x5=50]

- 4. Solve: $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$
- .5 Solve the homogeneous differential equation: $\frac{dy}{dx} = \frac{x^2y}{x^34y^3}$
- Show that the equation: $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$. 6. Is exact and solve it.
- 7. Discuss the convergence of the series

$$x + \frac{3x^2}{5} + \frac{8}{10}x^3 + \frac{15}{17}x^4 + \dots + \frac{n^2 - 1}{n^2 + 1}x^n + \dots$$

- Show that the series: $1 \frac{2}{3} + \frac{3}{3^2} \frac{4}{3^3} + \dots$ is absolutely convergent.
- 9x. Form a partial differential equation by eliminating f(x) from the equation $x + y + z = f(x^2 + y^2 + z^2)$.
- 10. Solve the partial differential equation: $\frac{y^2z}{z}p + zxq = y^2$

www.arjun00.com.np

Contd....

- 11 Find the smallest period of sin 5x.
- 12. Prove that:
 - a) The identify element of a group (G, *) is unique.
 - b) In a group, the inverse of an element is unique.
- 13. Given an algebraic structure ((G, *) with G=R- {1}, the set of real numbers without the unit number and * stands for the binary operation defined by: x*y = x + y xy for all x, y ∈G. Find the identity and inverse elements of 3 and -2.

OR

Write the standard form the equations of hyperboloid of one sheet and elliptic paraboloid. Find the equation of the tangent plane to the ellipsoid. $\frac{x^2}{27} + \frac{y^2}{12} + \frac{z^2}{3}$.

Council for Technical Education and Vocational Training Office of the Controller of Examinations Sanothimi, Bhaktapur

Regular/ Back Exam- 2073, Falgun

Diploma in IT/ Computer/ Electronics Program:

Full Marks: 80

Engineering

O Ariun

Year/Part:

IVI (New+Old DEX)

Pass Marks: 32

Time: 3 hrs

Subject:

Engineering Mathematics-III

Candidates are required to give their answers in their own words as far as practicable. The figures in the marrin indicate full marks.

Attempt All questions.

www.arjun00.com.np

Group 'A'

[3x(5+5)=30]

1. (a) Write the standard form the equations of hyperboloid of one sheet and elliptic paraboloid. Find the equation of the tangent plane to the ellipsoid $\frac{x^2}{27} + \frac{y^2}{12} + \frac{z^2}{3}$

(b) If
$$u = x^3 + y^3 + z^3 - 3xyz$$
, find $\frac{du}{dx} \cdot \frac{d^3u}{dxdydz}$

2. (a) Partial differential equation. Solve $\frac{dy}{dx}$ +1 = e^{x+y}

(b) Solve:
$$\frac{d^2z}{dx^2} - \frac{d^2z}{dy^2} = e^{x+2y}$$

3. (a) Define p-series. Test convergence of the series.

$$\sum_{n=1}^{\infty} \frac{x^2}{3^n}$$

(b) Find the taylor's series generated by $f(x) = \frac{1}{x-1}$ at x=2

Group 'B'

[10x5 =50]

Attempt All questions. www.arjun00.com.np

Find the half range cosine series expansion of the function. 4.

$$f(x) = \begin{cases} 1, & 0 < x < \frac{1}{2} \\ 0, & \frac{1}{2} \le x1 \end{cases}$$

- Define trigonometric series. Find the fundamental at period of sin2x.
- 6. Expand f(x) in the Fourier series if $f(x)=x^2$ (0< x <2 π)
- 7. Find the Fourier transform of the function: $f(x) = \begin{cases} 1, & a < x < b \\ 0, & otherwise. \end{cases}$
- 8. Solve: $xz \frac{dz}{dx} + yz \frac{dz}{dy} = xy$
- 9. Solve: $\frac{dy}{dx} + \frac{\cos x}{\sin x} y = x$
- 10. Solve the following partial differential equations:

$$x(y-z)\frac{dz}{dx}+y(z-x)\frac{dz}{dy}=z(x-y)$$

- 11. Show that the series $1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+\dots$ is absolutely convergent.
- 12. Find the interval of convergence or divergence of following series:

13. Define Fourier series. Fin the Fourier series of f(x) defined in the interval (-2, 2) as $f(x) = \begin{cases} 2, -2 \le x \le 0 \\ x, 0 < x < 2 \end{cases}$

ENGINEERING MATHEMATICS-III

Examination 2074 Regular/Back Special scholarship

Full marks: 80 Pass marks: 32

practicable.

www.arjun00.com.np

s far as

Attempt any Two questions from Group A and Three questions from Group B

Group A

- 1. a) If $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 5 \\ 7 & 2 \end{bmatrix}$. Prove that $B^T A^T = (AB)^T$. [5]
 - b) Find the acute angle between the lines whose direction cosines are connected by the relations l + m + n = 0 and $l^2 + m^2 + n^2 = 0$ [5]
- 2 a) Solve using row equivalent matrix method or Cramer's rule: [5]

$$x + 2y - 3z = 0$$
$$2x - y + 3z = 4$$

$$3x + 4y + 7z = 14$$

b) Prove that:
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc(a - b)(b - c)(c - a)$$
 [5]

- method): cos(A + B) = cos A cos B -3. a) Prove that vector sin A sin B [5]
 - b) Define collinear vectors. Prove that the three points with the following vectors are collinear: i + 2j + 3k, -2i + 3j + 4k, 7i + k

Group B

- Define complex number and find the cube roots of unity. 4. [5]
- State De-Moivre's theorem and hence use it to find the square 5. roots of $\frac{1}{5} + i \frac{\sqrt{3}}{5}$. [5]
- Find the local maxima and local minima and point of inflection if Ó. exists: [5]

$$f(x) = 2x^3 - 3x^2 - 12x + 4$$

X	8	4	12	6	10
Y	11	13	8	0	70

- A stone thrown into a pond produces a circular ripple which
 expands from the point of impact. If the radius of the ripple
 increases at the rate of 1.5 ft/sec., how fast is the area growing with
 radius is 8 ft.
- 9. Find the area of the region enclosed by $x^2 = 4ay$ and x = y. [5]
- The probability that a student passes a mathematics test is $\frac{3}{5}$ and he passes both mathematics and a chemistry test is $\frac{1}{5}$. The probability that he passes at least one test is $\frac{19}{20}$. What is the probability that he passes the chemistry test?

Calculate A.M., G.M. and H.M. from the following data: [5]

11.	-ks	0-10	10-20	20-30	30-40	40-50	50-60
Ma	mber of students	5	7	18	10	8	4

Find the area enclosed by the circle $x^2 + y^2 = 64$ [5]
Determine the maximum value of the objective function F(x, y) = 64

13. x + y subject to the constraints $2x + y \le 20$, $2x + 3y \le 24$, $x \ge 0$, $y \ge 0$ (Use graph paper)

www.arjun00.com.np

Time: 3 hrs.

www.arjun00.com.np

Full marks: 80

Candidates are required to give their answers in their own words as far as practicable.

Attempt any Two questions from Group A and Three questions from Group B

Group A

- 1. a) Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x, y) = xy + y^2$.
 - b) Solve the following differential questions by separating the
 - i) tan x dy + tan y dx = 0
- ii) $\frac{dy}{dx} = e^{x-y} + x^2 \times e^{-y}$ 2. a) Define p-series with example. Determine whether the following series is convergent or divergent by comparison test 1+2 $\frac{2}{1+2^2} + \frac{3}{1+2^3} + \dots$

b) Find the Maclaurin's expansion of the function: $f(x) = \log(1 + x)$ the function: $f(x) = \log(1 + x)$ The find the function: $f(x) = \log(1 + x)$ $f(x) = \cos 3x$.

a) $f(x) = \cos 3x$. b) If $G = \{..., -6, -4, -2, 0, 2, 4, 6, ..., \}$, then prove that (G, +) is a group.

Group B

Verify Euler's theorem for homogenous function if $u = \frac{x^2 + z^2}{xy + yz}$

Find $\frac{d\mathbf{u}}{dt}$ of (any one) ŧ.

Find
$$\frac{dt}{dt}$$
 $u = x^2 + y^2$, $x = \cos t + \sin t$, $y = \cos t - \sin t$ at $t = 0$

ii) $u = e^{xyz}$, $x = t^3$, $y = \frac{1}{t}$, $z = e^t$

Solve:
$$\frac{dy}{dx} = \frac{x+y}{x+y+1}$$

- Prepare clayey table for the set {0, 1, 2, 3, 4} under the operation addition modulo 5. Identify the identity element and the inverse of each element.
- Show that the given equation is exact and solve; 5

$$(x+y-1) dx + (x-y-z) dy = 0$$

- Form P.D.E. by eliminating the form $lx + my + nz = f(x^2 + y^2 + z^2)$
- Define Fourier series check whether the function, f(x) =10 $\int -2x \text{ for } -\pi < x < 0$ is odd or even and hence obtain the 1-2x for $0 < x < \pi$ corresponding Fourier series.
- Show that the following series is divergent.
- Define alternating series with example. Test whether the following series is absolute convergent or conditionally convergent $1 - \frac{1}{2} + \cdots$
- Find the interval of convergence and radius of convergence of the given power series $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \dots$
- Find the Fourier series expansion of f(x) = x, -2 < x < 214.
- Define group prove that the identity element of group is unique. 15. Also, prove that the inverse of group is unique.

ENGINEERING MATHEMATICS-III

Examination 2072 Back

www.arjun00.com.np

Full marks: 80 Pass marks: 32

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as

Attempt any Two questions from Group A and Three questions from Group B

Group A

- a) Prepare Cayley table for the set {0, 1, 2, 3, 4, 5}. Under the operation multiplication modulo 6. Identify the identity element and the inverse of each element if possible.
 - b) Define group. Prove that the identity element of group is unique. Also, show that the inverse of group is unique.
- 2. a) If $u = \sqrt{x^2 + y^2 + z^2}$, then prove that: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{u}$
 - b) Let $u = \frac{x^4 + y^4}{x + y^4}$ prove that: $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u$
- 3, a) Define the p-series. Test the series for convergence by apply ratio of $\frac{1}{3} + \frac{4}{6} + \frac{9}{27}$
 - b) Find the interval and radius of convergence of the power series; $1 + 2x + 3x^2 + 4x^3$

Group B

- Solve: $(xy^2 + x) dx + (yx^2 + y) dy = 0$ 4.
- Solve: $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$ 5.
- Solve the partial differential equations: (Any one) 6.
 - $z = ax + by + a^2 + b^2$ i)
 - xp + yq = z
- Show that the given equation is exact and solve: 7. (2 ax + by) y dx + (ax + 2 by) x dy = 0
- Using definition, find $\frac{\partial f}{\partial y}$ form $f(x, y) = x^2y$ 8.

- Find the Maclaurin's series expansion of cos x. 9.
- 10. Find the smallest positive period p of sin nx.
- Find the Fourier series of given function in the given interval, 11.

$$f(x) = \begin{cases} 0, -2 < x < 0 \\ 2, 0 < x < 2 \end{cases}$$

 $f(x) = \begin{cases} 0, -2 < x < 0 \\ 2, 0 < x < 2 \end{cases}$ Test whether the function is even or odd. Also, find the 12. corresponding Fourier series;

$$f(x) = \begin{cases} -2x \text{ for } -\pi < x < 0 \\ -2x \text{ for } 0 < x < \pi \end{cases}$$

$$u = x^2 + y^2$$
Find
$$\frac{du}{df} : x = 2t + 1$$

$$y = t^2 + 2$$

13.

ENGINEERING MATHEMATICS-III

Examination 2071 Regular/Back New Course

Time: 3 hrs.

www.arjun00.com.np [ull marks: M]

Candidates are required to give their answers in their own words as far a practicable.

Attempt any Two questions from Group A and Three questions from Group B

Group A

- a) Prepare Cayley table for the set {0, 1, 2, 3} under the operation multiplication modulo 4. Identify the identity element and the inverse of each element if possible.
 - b) Define group. Prove that the identity element of group is unique.
 Also show that the inverse of group is unique.
- 2. a) Solve: $(x + y + 1) \frac{dy}{dx} = 1$.
 - b) Show that the given equation is exact and solve; (x+y-1)dx + (x-y-2)dy = 0.
- a) Define convergent and divergent series. Test whether series is convergent or divergent;

$$1 + \frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \dots$$

b) Show that the series is conditionally convergent;

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Group B

- 4. Form a partial differential equations: (Any one)
 - i) $z = ke^{ax} \sin ay$
 - ii) $lx + my + nz = f(x^2 + y^2 + z^2)$

5. Solve the partial differential equations. [Any one]

i)
$$\frac{\partial z}{\partial x}xz + yz\frac{\partial z}{\partial y} = xy$$

ii)
$$xp - yq + x^2 - y^2 = 0$$

 Find the interval and radius of convergence of power series. [Any one]

i)
$$\sum\nolimits_{n=1}^{\infty} (-1)^{n-1} \frac{n(n+1)}{2} x^{n-1}$$

ii)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

- Assuming the convergence of Taylor's series, find the Maclaurin's series expansion of sin x.
- 7. series expansion of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ from $f(x, y) = x^2 xy$.
- 8. Find du (Any one);

9.

i)
$$u = e^{xyz}, x = t^3, y = \frac{1}{t}, z = e^t$$

i)
$$u = c$$

ii) $x^2 + y^2 + z^2$, $x = 2t + 1$, $y = t + 5$, $z = 7t$.

10. Let
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

11. Find the Fourier series of given function on the given interval;

$$f(x) = \begin{cases} 0, 0 < x < \pi \\ 1, \pi < x < 2\pi \end{cases}$$

 Test whether the function is even or odd. Also find the corresponding Fourier series;

$$f(x) = \begin{cases} -2x, -\pi < x < 0 \\ 2x, 0 < x < \pi \end{cases}$$

www.arjun00.com.np

milear Education and Vocational Training Office of the Controller of Examination Sanothimi, Bhaktapur

Regular/Back Exam Chaltra, 2069

Program: Diploma in IT / Computer / Electronics Eng. (New)

Year/Part: II/I

© Arjun

Full Marks: 80

Subject: Engineering Mathematics III

Pass Marks: 32

[5]

Time: 3 hrs.

ndidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

www.arjun00.com.np

Group 'A'

Attempt All questions.

1. a. Define the partial differential equation. Form a P.D.E by eliminating a and b from z = (x + a)(y + b)[1+4=5]

b. Obtain the general solution of $2 \frac{\partial x}{\partial x} + 3 \frac{\partial z}{\partial y} = x + y + 1$ [5]

What is periodic function and define the Fourier series. 2. [1+2+7=10] Find the Fourier series of the

$$f(x) = \begin{cases} -1, & \text{if } -\pi < x < 0 \\ 1, & \text{if } 0 < x < \pi \end{cases}$$

Use Maclaurin expansion, prove that 3. a.

 $Sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$

Test the convergence and divergence of b. [5] $1 + 3x + 5x^2 + 7x^3 + \cdots, \dots$

Group 'B

Attempt Any Ten Questions.

[5x10=50]

What is space curve? Find the equation of the tangent line 4. at a given point P (r) on the curve C. www.arjun00.com.np

Define the central conicoid. Show that the plane 3x + 12y - 6z = 17 tangent to the conicoid 5 $3x^2 - 6y^2 + 9z^2 = 17$

$$3x^2 - 6y^2 + 9z^2 = 17$$
6. Find the condition that the plane $lx + my + nz = p$ may touch the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

7. Solve:
$$(1+x) y dx + (1+y)x dy = 0$$

8. Solve by reducing to exact form
$$2xy dy - y^2 dx = 0$$
.

9. Solve:
$$\frac{dy}{dx} + y \cot x = \cos e r x$$
.

10. Define even and odd function. Check even or odd of the function (i)
$$f(x) = x \cos x + \sin x$$

(ii) $f(x) = x \sin x$

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots$$

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots$$
 is convergent.

13. Test whether the series
$$\sum_{n=1}^{\infty} \frac{n!n!}{(2n)!}$$
 converges or diverges.

14. Find the smallest period of
$$f(x) = cosnx$$
.

$$\frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots$$

